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Abstract: In the paper the result of application of artificial neural networks (ANN) for radionuclides transport modelling with 
surface runoff is presented. ANN with supervised training based on back propagation algorithm was used to predict 
radionuclides transport in the soil and on its surface. Application of ANN for substances migration modelling is worth 
using, because it works like a “black box” and can catch patterns, which are hard to formalize in mathematical form or 
can’t even be introduced in the form of equations. Factors, which influence mass transfer process in different types of 
soil and on the soil surface, were defined for micro and meso/macro scales. They were introduced in a numeric form, 
normalized and used as input layer neurons of ANN. The obtained radionuclides concentration was used as neuron of 
an output layer. ANN is an example of empirical modelling approach and requires computing operations of the same 
type with a large number of field measured datasets. That is why the ANN training process took a lot of time. This 
problem was solved using parallel computing, which had a sufficient accelerating effect due to the nature of the 
training process. One of the technologies for parallel computing is CUDA from Nvidia, which uses a video card 
graphical processing unit. CUDA-technology was applied to accelerate ANN training and computing based on back 
propagation algorithm, which runs on a CUDA-device up to 5 times faster than the same operations on a CPU (central 
processing unit). 

Key words: radionuclides migration modelling, soil surface, artificial neural networks, ANN, back propagation, NVIDIA CUDA 

1. INTRODUCTION  

Radionuclides transport modelling is quite a complex task. But it is very important nowadays 
due to the man-triggered existence and pollution. There are several approaches applied in this 
science area. Some of them are founded on the phenomenological theory of mass transfer and the 
laws of thermodynamics based on differential equations (the convective diffusion equation, 
St. Venant equations, diffusive and kinematic wave equations (Borah, 2003), balance equation of 
the slope runoff, etc.). Others are empirical models, which require large sets of experimental data in 
special conditions (Kundas, 2011). 

Empirical models, describing the horizontal displacement of matter on the soil surface are based 
on natural observations. They include: the universal Ushmeyer-Smith’s equation of soil erosion 
(Wischmeier, 1978) (USLE); its MUSLE and RUSLE modification, developed by Larionov (for 
predicting migrating of radionuclides from storm water runoff); EPIC (Williams, 1989) and others.  

Erosion process models and models of mass transfer with surface water, which are based on 
physical laws (Borah, 2003; Favis-Mortloc, 2007), include: WEPP, NonPoint Source pollution 
model (AGNPS), EUROSEM, STREAM, LISEM, Soil and Water Assessment Tool (SWAT), 
Dynamic Watershed Simulation Model (DWSM), KINematic runoff and EROSion model 
(KINEROS), CASC2D, models of Mirtskhulava, Kondratyev, Sukhanovskaya, Svetlichny, multi-
purpose computer systems Areal Nonpoint Source Watershed Environment Response Simulation 
(ANSWERS), Chemicals, Runoff and Erosion from Agricultural Management Systems 
(CREAMS), the European Hydrological System model (MIKE SHE), Hydrological Simulation 
Program – Fortran (HSPF) and others.  
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Empirical models are mainly used to predict the environmental situation in a short period of time 
and make the analysis of separate factors’ influence on the studied process complicated or even 
impossible. 

The second modelling approach, which is based on physical laws, involves studying the 
governing processes and describing their dynamics with physically interpretable equations. As a 
rule, the systems based on differential equations, such as phenomenological models, represent the 
balance ratio of matter and energy in the system. This approach does not require a redundant set of 
experimental data to determine the parameters, which are used as variables. Most of the used 
parameters have clear physical or biological meaning, and therefore can be measured directly.  

In the case of physically based approach determination of static coefficients, which are used in 
differential equations, are required. Computing of the coefficients is a very complicated task, 
because of the following reasons: 1) several physical values should be measured for a sufficient 
amount of time; 2) most of coefficients can be used in modelling of only those catchment areas they 
have been measured (or calculated) for.  

Thus, most of the developed models greatly simplify the actual process and don’t take into 
account the influence of separate factors; or they take the most influencing factors into 
consideration to decrease modelling error, what leads to the complication of the model and 
simulation, creates problems of numerical implementation and of the lack of input parameters in 
database. 

An alternative tool for solving such problems is use of an artificial neural network. ANNs work 
like a “black box”. They are usually used to model complex relationships between inputs and 
outputs, which are hard to formalize in mathematical form or can’t even be introduced in the form 
of equations, or to find patterns in data.  

There are several examples, where ANNs were used in mass transfer modelling and simulation 
of surface runoff distribution. Generalized Regression Neural Network (GRNN) model was used to 
define the influence of rainfall and surface drainage water on nutrient load into the neighbouring 
water systems by predicting the surface water quality and quantity (Kim, 2006). In Kanevski (1997) 
ANN and modern geostatistical models were used for the analysis of spatially distributed 
environmental data. Runoff and sediment yield from an Indian watershed during the monsoon 
period were forecasted for different time periods (daily and weekly) using the back propagation 
artificial neural network (BPANN) modelling technique (Agarwal, 2009). In de Vos (2005) multi-
layer feed forward ANNs were used for rainfall-runoff modelling in the Geer catchment (Belgium). 

ANNs have the following advantages (Haykin, 1999): the ability of generalizing and self-
training, solving problems with unknown patterns, resistance to input data noise, adaptation to a 
changing environment, fault tolerance at the hardware implementation of neural networks, 
scalability, consistency of analysis and design, etc. ANNs have also some drawbacks (Haykin, 
1999). Intermediate results can’t be interpreted. A large training set is needed to construct an 
adequate model. The process of network training takes a lot of time. ANNs may have a highly 
complex internal structure. There is no rigorous theory on the ANN structure choice. 

However, due to using parallel processing technology, which greatly accelerates the speed of 
network training, and in case of having a sufficient database for network training (a large quantity 
of experimental data on the concentration and activity of radionuclides is available; data on the state 
of climate, soil and relief have been accumulated) application of artificial neural networks in 
radionuclide transport modelling is appropriate. Choosing different topologies, combinations of 
activation functions and training parameters for hidden layers, several ANNs with minimum error 
can be selected and used for practical purposes.  

In this paper, ANNs with supervised training based on back propagation algorithm were used to 
predict the vertical and horizontal transfer of radionuclides in the soil. This algorithm was chosen 
because it can be easily paralleled and it is not difficult to change the structure of ANN if new 
influencing factors are added (ANN doesn’t need to be retrained from the beginning; it can be 
trained with new data on the base of the previous state). 

Several ANN structures were developed to predict radionuclides migration on different scales. 
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ANNs were used to calculate result concentration (or activity) in a soil point or in a watercourse 
(alignment) at different time periods. That is why concentration was included as neuron in output 
vector. It is a common practice to use factors, which influence the process, as input neurons in 
ANN. So, it was needed to determine these factors and find dependences in governing processes for 
vertical and horizontal migration. The work was supported by the Belarusian Republican 
Foundation for Fundamental Research. In this paper horizontal radionuclide migration is 
particularly described.  

2.  ANN APPLICATION FOR RADIONUCLIDES MIGRATION IN HORIZONTAL 
DIRECTION 

Contaminant migration in the horizontal direction is affected by the following processes: water 
erosion (flood runoff, snowmelt and storm water under the influence of gravitational forces), wind 
erosion (deflation), human activity, ion exchange, diffusion, capillary phenomena, sorption and 
desorption of soil particles.  

Primarily radionuclide migration in an unsaturated zone and on the soil surface depends on 
physical and chemical characteristics of soil and radionuclide and the surface runoff distribution. 
The surface runoff and its distribution are affected by a wide range of factors (Kovalenko, 2006; 
Solomon, 2005; Panagopoulos, 2011; Paul, 1999; etc.): 
 rainfall: intensity, duration, distribution, the amount and phase state, 
 initial moisture content, 
 the presence of vegetation, vegetation heterogeneity cover and its type, 
 filtration and sorption characteristics of the soil (acidity, grading, cation exchange capacity, 

humus content, humidity), 
 land development and the type of terrain, 
 the level and steepness of the slope, 
 relief type, 
 wetlands, 
 temperature, 
 wind speed and direction. 
 
Influencing factors should be divided into groups according to the scale of area the forecast 

should be made for. Traditionally micro (plots, slopes) and macro/meso (watershed) scale are 
differentiated.  

Micro scale modelling can be applied to predict secondary contamination of close located areas 
(redistribution of contamination including decay) and radionuclides redistribution between nearby 
spatial points. Macro scale modelling allows us to analyze migration of radionuclides from 
catchments to water objects (rivers of lakes). 

2.1 Micro scale modelling 

In micro scale all the factors affecting migration with surface runoff were carefully studied. 
Many authors (e.g. Blanco-Canqui, 2008; Shao, 2009; Kovalenko, 2006; Paul, 1999) have proposed 
to divide them into three groups, according to the erosion processes. These groups are listed below 
(see Figure 1). 

The architecture of the project was developed in accordance with this approach. It is proposed to 
use three ANNs to predict radionuclides redistribution in micro scale. Each of the networks predicts 
the migration that occurs under the influence of some process: 1) wind erosion (with a solid runoff), 
2-3) water erosion (with snowmelt and rainfall runoff). This approach gives the opportunity to 
obtain a continuous prediction of radionuclides concentrations on the soil surface at different 
distances from the site of substances’ deposition.  
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In micro scale we took into account the influence of higher located neighbour points’ 
radioactivity. ANN topology for radionuclide migration with rainfall runoff is chosen as example. 
Among the input factors (see Figure 1) there are time and spatial dependent ones. 

 

Figure 1. Horizontal migration of radionuclides affected by different processes. 

For single time step (week, month, year, etc.) one training data set for each pair of neighbour 
points (the distance r between them is closer than given distance R), which are on different height 
levels on the soil surface, includes the following inputs: 
 start concentrations (Bq/kg) or densities (Bq/m2) Ci start and Cstart at both points for the 

beginning of modelling period, 
 sinuses of slope angles (sinα, sinβ) at both points (each is calculated by difference in height 

and distance) and distance (r) between them, 
 total precipitation (in mm), average temperature (in degrees) and relative humidity (%) for 

time step (if the time step is greater than one year precipitation, temperature and humidity are 
required to be given by seasons),  

 conduction mode factor, factor of human activity and factor of erosion control measures (as 
coefficients), 

 spatially dependent characteristics for both points in pair [vegetation characteristics: 
vegetation type (as coefficient), radionuclide content in plants (Bq/kg), thickness of the 
litter (sm); and soil characteristics: percentage of sand, silt, clay; humus content (%), acidity 
(pH), cation exchange capacity (meq+/100g or cmol+/kg), average humidity (%) (see 
Figure 1)], 

 constant coefficient of unaccounted factors’ influence (0.5 units). 
 
Unaccounted factors influence (as constant coefficient) was proposed to be included in ANN 

topology to take into account the possible impact of any additional factors. After ANN is trained, 
weight coefficients, which show the influence of input neurons on the first hidden layer, are 
calculated. Due to their values it is possible to conclude, how pronounced the impact is. Thus, 
analyzing the weight coefficients, which are associated with the last significant neuron in input 
layer (this neuron shows the influence of unaccounted factors), it is possible to conclude how well 
the ANN topology covers governing process. 

In the micro scale while the analysis of spatial data is held, several pairs of points with one basic 
(pending) point can be selected (Ni – number of pairs). For one basic point only a single pair can be 
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chosen to be included in the training set. The pair is selected by the greatest influence on the 
pending point. The selection is made by the maximum value of criteria, which is calculated for each 
i–pair:  

{1, ..., }i  start i
i i

 start

C R r
sina   ,  i   N

C R


  (1) 

where Ci start and Cstart – concentrations at both points in each pair for the beginning of modelling 
period (Cstart – in pending point, Ci start – in other point i–pair), sinαi – sinus of surface angle, 
calculated by the distance between points in i–pair (ri) and their difference in height (Δhi): 

2 2

i
i

i i

h
sin

r h





 
.  (2) 

In training data set final concentrations (Bq/kg) or densities (Bq/m2) for the modelling period 
(time step) in each point are used as output neurons.  

In computing mode for the case of modelling for several time steps, final concentration (or 
density) for the previous period is used as input (start) concentration (or density) for the next period. 

2.2 Watershed scale modelling 

Macro scale factors are influenced by micro scale ones, but differ in some way (some micro 
factors can’t be measured in macro scale, some macro factors have no meaning in micro level) or 
have another time or spatial numerical measurement.  

In macro scale it is quite hard to divide factors into groups in accordance with influence 
processes. Factors, which affect radionuclides on macro level from catchment to watercourse, are 
the following:  

a)  watercourse characteristics: concentration in input flow (Bq/l) (if watercourse starts out of the 
pending catchment), concentration in sediments (Bq/kg), hydrographical length of the 
watercourse (km), average slope of the watercourse (as sinus function of angle), height of the 
catchment above sea level (m), conduction mode (as moisture coefficient); 

b)  left and right watercourse bank characteristics of catchment: initial average pollution density 
(kBq/km2); average slope of catchment hills (as sinus-function of angle); average relative 
percentages (%): of forest catchment, water logging, lakes and artificial ponds, stagnant lakes, 
karst catchment, plowing catchment to the total catchment area; characteristic of the soil type 
in catchment (texture (%): clay, silt, sand and rock; acidity (pH), average organic matter 
content (%)); average depth of the groundwater (the first of the aquifer); characteristic of the 
terrain (flat, rock);  

c)  climate characteristics: total rainfall (mm), average temperature (in degrees), average relative 
humidity (%), shift perpendicular of the watercourse to the two predominant wind directions 
(as cos(β–γ), where β – wind shift relative to the western direction, γ – shift perpendicular of 
the watercourse to its latitude) and their average speeds (m/s). 

 
In macro scale one ANN is used. All mentioned factors are used as input neurons. The 

watercourse is divided to parts between targets with known concentrations in water and sediments. 
Each part has one training dataset for a single time step. 

Pending radionuclide concentrations in the water (Bq/l) and in sediments (Bq/kg) for the end of 
modelling period are used as output neurons. 
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3.  CUDA-TECHNOLOGY APPLICATION FOR SUPERVISED TRAINING OF 
ARTIFICIAL NEURAL NETWORKS 

While ANNs were trained it was found, that training process took a lot of time. This problem 
was solved using parallel computing. The feasibility of parallel computing with a GPU (Graphics 
Processing Unit) using CUDA-technology was investigated. CUDA (Compute Unified Device 
Architecture) was used to accelerate ANN training based on back propagation algorithm. CUDA 
application in forecasting mode also made this process faster (Hilko, 2010b).  

The mechanism of parallel ANN training algorithm based on back propagation includes a single-
step calculation for all segments of the network. So if output parameters of the previous layer (for a 
prediction mode) or the next layer (for training) are unknown, it is impossible to calculate 
parameters of the current layer. There are two ways how the algorithm can be parallelized (Hilko, 
2011): 1) simultaneous training of several ANN and choosing of the best one according to the 
minimum error criteria, 2) simultaneous calculation of several neuron parameters of one layer. The 
second method has been chosen to implement parallel training algorithm. Since it requires less 
memory on the device than the first one, this approach can be used for ANN, where layers have 
larger number of neurons. 

The training algorithm consists of three blocks, repeated for each set of input data in the 
following order: 1) direct computing (the calculation of each layer outputs, starting with the first), 
2) calculation of error for the whole network (root mean square error or mean relative error) and 
errors of each layer, starting with the last one, 3) calculation of correction values for the weights’ 
matrices and thresholds’ vectors with their further updating. 

Because of the hardware features of video cards the number of neurons in the layer must be a 
multiple of 2n, where n = {1, …, 5}. For those networks, where the number of neurons in layers is 
greater than 8, the number of neurons must be divisible by 16 (Hilko, 2010a). For this purpose 
weights’ matrices (Wi) and their correction values (ΔWi), the input (Yi-1) and output (Yi) vectors, 
thresholds (Ti) and their correction values (ΔTi), the current error vectors (Ei) are aligned (filled 
with zeros) with the selected dimensions (i = 1…N, where N is the amount of hidden layers plus the 
output layer). When parameters are aligned “imaginary” (0-value) neurons are added to the ANN to 
get the amount of neurons divisible by 16. Neurons of Inputs and Outputs should be normalized in 
the range of (0;1). 

It is important to note, that this approach should be mathematically checked for each type of the 
activation function. It is true, when one of the following conditions is met: 
 activation function for 0-point is F(0)=0 (such as bipolar sigmoid function or hyperbolic 

tangent) and desired values of the Outputs “imaginary” neurons (Yi', where i = N) are filled 
with 0; 

 the desired values of the Outputs “imaginary” neurons are equal to F(0), so 
Outputsim = YN'im = F(0). 

 
The scheme of interaction between the external and the developed (as a dynamic linked library) 

modules is shown in Figure 2 (Hilko, 2011). Baseline data on the current network state 
(Wi, ΔWi, Ti, ΔTi, Ei, Yi for each layer) are formed by an external module according to the rules 
mentioned before. 

If the network is trained for the first time, Wi and Ti are filled with random numbers in the range 
of [–0.05;0)  (0;0.05] or other mathematical algorithms (e.g. genetic) are used. Before training 
starts, corrective weights and thresholds (ΔWi and ΔTi), the current error vector (Ei) and output 
vector (Yi) are filled with zeros.  

If the network has been trained before and needs training once again starting with its previous 
state, its saved values Wi, ΔWi, Ti, ΔTi, Yi are used. 

The current network state parameters are sent by reference to the control module (host). Some 
memory on the device is allocated for them. Memory is also allocated for the arrays, which are 
needed for intermediate calculations. At the first step the training datasets (Inputs, Outputs) 
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included in one epoch are transmitted to the plug-in manager, at the second step – are put to the 
device. 

Computing algorithm includes the consistent implementation of the direct and reverse passes for 
each inputs and outputs (Inputs, Outputs) set of one epoch. The control module copies the value of 
the output layer’s root mean square error (RMSE) from the device, which is used in calculating of 
the total RMSE of each epoch. It is saved in a file. According to the epoch RMSE it can be judged, 
how well has the network been trained. When the training is completed (a required level was 
achieved or a specified number of iterations was done), the device returns current network state 
parameters Wi, ΔWi, Ti, ΔTi, Ei, Yi for each layer back to the control module. Then these data are 
sent to the external module. 

 

Figure 2. Scheme of interaction between external and developed modules. 

Thus, there is no need for constant training parameters moving between the host and the 
device. Having once received them, the device trains the network itself, periodically returning only 
the value of RMSE to allow the current ANN state tracking. Also Wi and Ti for each layer can be 
transferred to use them in the external graphics module that visualizes current ANN state 
(see Figure 3), if it is necessary. However, it increases the training time. Graphic display of network 
status should be used to determine its topology, when parameters’ visualization allows changing the 
structure to minimize the RMSE.  

 

Figure 3. Examples of the current ANN states.  
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4. FEATURES OF MEMORY ALLOCATION 

While using CUDA for ANN training is was found that ANNs with large amount of neurons 
can’t be located on video card because of the lack of memory. For this reason we had to investigate 
the algorithms of memory allocation and to find out dependences between memory volume of the 
device and ANN topologies, which can be located on video card. 

It is necessary to take into consideration that the video card memory for the ANN parameters is 
not completely allocated for them. It was experimentally established that the video card with 
256 Mb full amount memory allows to allocate only 230 Mb (242 077 696 bytes – 90.2 %), the rest 
of memory is reserved. A 512 Mb memory video card allocates 473 Mb (92.5 %). In the 1024 Mb 
memory video only 951 Mb (92.9 %) are available. Moreover, during calculation of small arrays 
(eg. 256 elements) the memory is allocated from the reserve (Hilko, 2010b). 

On the GeForce 9500 GT the function, which allocates memory for 3 vectors (dimension m) and 
3 of the matrices (dimension n, m x m = n), was investigated in detail. Global memory for vectors 
starts to be allocated for m ≥ 1024.The first vector memory is allocated with the required volume. 
The second one and others take a multiple of 64 Kb (65536 bytes) volume of memory. 

For matrices up to (1024 x 1024) the situation is similar. However, more memory is allocated in 
the first matrix of a large size (1024 x 1024 and above), than it is required (see Table 1). Equation 
(3) was empirically obtained on experimental data for the matrices in Table 1:  

,12)12( 162  nMemo  (3) 

where Memo – is the volume of allocated memory in bytes for the matrix, n – is number of elements 
in the matrix. For other matrices (except the first one) memory is allocated as much as needed. 
 

Table 1. Memory allocation for neurons weight matrices  

# 
Matrix 

Dimension 
Number of 
elements, n 

Required memory, 
bytes (col.2 x 4) 

Allocated 
memory by 

CUDA, bytes 

Memory by 
 (3), 

bytes 

Attitude 
col.3/col.4 

1 1024 х 1024 1048576 4255744 4194304 4194304 1,01468 
2 2048 х 2048 4194304 16834560 16777216 16777216 1,00341 
3 3072 х 3072 9437184 37801984 37748736 37748736 1,00141 
4 4096 х 4096 16777216 67158016 67108864 67108864 1,00073 
5 5120 х 5120 26214400 104902656 104857600 104857600 1,00042 

 
The quantity of training datasets that can be put into the device’s memory for network training 

was calculated. Datasets with the number of neurons in input vector up to 2608 were investigated. 
Also formulas for the described approach were derived to estimate the maximum ANN topology 
satisfying the following conditions, which can be trained on the device depending on memory size: 

a)  the number of hidden layers, including the output layer, is equal to two (Haykin, 1999): one 
latent layer and the output layer; 

b)  the number of neurons in the first hidden layer is equal to 2N0 + 1, where N0 – is the number 
of input neurons, which follows Kolmogorov's theorem (Kolmogorov, 1957). Input data must 
be normalized and aligned (Hilko, 2011) to N0' before the beginning of training. That is why 
input neurons number should be N0' = 16n (n – natural number). For the first case the number 
of neurons in first hidden layer (N1') should be equal to N1' = 2N0' (as N0 < N0' for all N0, 
which are not multiplies of 16, and which implies 2N0 +1 < 2N0'). For the case, where N0 is 
a multiple of 16, N1' = 2N0' + 16; 

c)  the number of output neurons is set arbitrarily N2'= kN0 (k > 0, k – coefficient of 
proportionality) and should be also aligned. 
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As a result, we obtained four equations (eq. (4) – (7), where N0' = N) to assess the maximum 
number of neurons in the two-layer aligned ANN (N – 2N – N: N neurons in input layer –2N 
neurons in first latent layer – N neurons in output layer), which may be trained on different cards 
depending on the RAM volume. If Epoch – is the number of input data sets for one training period, 
Memo – is the required memory volume in bytes for putting all the data elements, then for 
N0, which are not multiplies of 16, equation (4) for k ≤ 2 and equation (5) for k ≥ 2 are true. For 
those N0, which are multiples of 16, equation (6) is for k ≤ 2, and equation (7) is for k ≥ 2: 

,0256))1(425.1640()1(16 2  MemoNkEpohkNk  (4) 

,0))1(425.2032()1(16 2  MemoNkEpohkNk  (5) 

,0256))1(425.148160()1(16 2  MemoNkEpohkNk  (6) 

216( 1) (168 144.25 4 ( 1)) 256 0.k N k Epoh k N Memo         (7) 

For example, solving quadratic equation (4) for N (Epoch consists of 1000 data sets) with equal 
number of neurons in input and output vectors (k = 1), the device with 230 Mb of available memory 
(242 077 696 bytes) can be used for training the ANN (2624 – 5248 – 2624), since N = 2627.5. 

But due to the device’s memory allocation peculiarities, in practice, only (2608 – 5216 – 2608) 
network can be put in the memory (2608 neurons in the input and output layers, 5216 – in hidden 
layer). It should be noted, that locating all specified data on the device requires a little bit more 
memory than it is necessary. 

Figure 4 shows graphs of the allocated memory (in Mb) on the devices (9500 GT, 9800 GT and 
220 M) and the theoretically calculated memory requirements (CPU) by (4) to put all the data 
elements of two-layer aligned ANN (N – 2N – N) with different numbers of neurons in the layers. 
The "step" memory allocation on the GPU is clearly seen. 

5. RESULTS AND DISCUSSION 

CUDA application in ANN training algorithm for radionuclides migration modelling was tested. 
Tests were performed on a computer equipped with 4-core Intel Core 2 Quadra (2.86 GHz per core) 
and GeForce 9500 GT, and for GeForce 9800 GT and GeForce 220M GT. Figure 5 shows graphs of 
elapsed time in seconds for 10 training iterations of aligned ANN with two hidden layers (N – 2N –
 N) with 1000 data sets per iteration. 

Mathematical algorithm calculating on a CUDA-device runs up to 5 times faster than the same 
operations on a CPU (central processing unit). Maximum performance benefit depends on the 
configuration, kernel frequency, video memory capacity, bandwidth, version of the installed driver. 

6. CONCLUSIONS 

ANN was applied for horizontal radionuclides migration modelling. This approach is worth 
using because of several reasons. Factors in numeric and symbolic forms can be taken into account. 
Their separate contribution can be counted. No physically based equations should be used, because 
ANN can catch patterns which are hard to formalize to mathematical form. ANN can be used for 
other areas or catchments, if it’s additionally trained on new data. 

Factors, which influence horizontal radionuclides migration in macro/meso and micro scales 
were determined. They are used as input neurons in ANN structures.  
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Figure 4. Memory allocation for different topologies of ANN.  

 

Figure 5. Elapsed time for two-layer ANN training. 
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Due to large amount of training datasets, ANN training process took a lot of time. This drawback 
was overcome by using parallel computing with CUDA from Nvidia. This technology is based on 
GPU computing and accelerates ANN training with a large number of neurons in layers up to 
5 times. But due to the device’s memory allocation peculiarities, limitations on RAM volume and 
necessity of parameters’ alignment the data should be carefully prepared and analyzed before using. 

It is possible to conclude, that CUDA-technology and ANNs are worth using not only in 
radionuclide migration modelling, but they can be used in a wide sector of ecological tasks, which 
require parallel computing. 
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