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Abstract: Although Darcy-Weisbach (D-W) equation has been accepted as a standard resistance equation in pressurized flow, 
some researchers and engineers still prefer to utilize Hazen-Williams (H-W) equation for analyzing water distribution 
networks (WDNs) in practice. The main difference between roughness coefficients of these two resistance equations 
is that D-W friction factor varies with Reynolds number of flow field while H-W coefficient is usually considered as a 
fixed value for a specific material. In this paper, discrepancies between solving three pipe networks using these two 
resistance equations are investigated. These networks were solved using two hydraulic solver named gradient 
algorithm and finite element method assuming different values for roughness values. In order to compare the results, 
equivalent friction factors based on these two resistance equations were required to be used. In this regard, several 
methods for computing equivalent roughness values were selected from the literature. The first category uses 
Reynolds number and pipe diameter data for converting D-W friction factor to H-W coefficients and vice versa. On 
the other hand, the second one is exclusively a function of pipe diameter. The obtained results demonstrate that errors 
of solving networks with H-W coefficients are not significant in comparison with the results obtained by the D-W 
equation. More importantly, the method, which only exploits pipe diameter for roughness conversion, is appeared to 
be not reliable for some cases considered in this paper. 
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1. INTRODUCTION  

Hazen-William (H-W) and Darcy-Weisbach (D-W) formulas are two of the most common 
resistance equations in pressurized flow. Although the application of the former one is quite 
widespread in practice, especially in the United States, the latter one has much more reasonable 
background and acceptability in academic literature (Travis and Mays, 2007; Elhay and Simpson, 
2011). The empirical H-W equation utilizes a crisp coefficient (CHW) for each type of pipe material. 
However, the friction factor (f) of the dimensionally-consistent D-W equation is a function of 
material properties (absolute roughness, ɛ) and Reynolds number (Re) in turbulent flows, the most 
common flow regime in water networks. In spite of numerous applications of these resistance 
equations in water distribution network (WDN) problems, only a few studies investigated the 
accuracy of such applications (Lion, 1998; Christensen et al., 2000; Bombardelli and Garcia, 2003; 
Uribe et al., 2015). In this regard, much more studies are required to be conducted focusing on the 
application of these crucial equations and also relationships between C-W and D-W equations in 
pipe network analysis. 

In this paper, the discrepancies between solving three sample pipe networks using these two 
resistance equations are investigated. Moreover, the performance of different available relationships 
between CHW and f in analyzing water networks are studied. These analyses are conducted in the 
whole range where the C-W equation is valid. Furthermore, two different hydraulic solvers are 
utilized to determine the performance of different relations for WDN analysis. The results overall 
indicate that application of H-W equation and the relationships converting CHW to f, which 
considers both pipe diameter and Reynolds for conversion, yield to closer results to when D-W 
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friction factor is used. Moreover, H-W equation with relationship converting to D-W friction factor, 
which exclusively takes into account pipe diameter for the conversion, should be used with more 
caution. 

2. RELATIONSHIPS BETWEEN H-W AND D-W COEFFICIENTS 

The H-W and D-W resistance equations relate head loss (hL) of a typical flow through an 
arbitrary pipe as shown in Eq. 1: 

 hL =
10.67L
CHW
1.852D4.87

Q1.852 = 8 fL
π 2gD5

Q2   (1) 

where L is pipe length, π  is pi number, g is gravitational acceleration, D is pipe diameter, and Q 
denotes pipe flow rate. In Eq. 1, the first and second right hand-side terms are H-W and D-W 
equations, respectively. The multiplier 10.67 in H-W equation is only valid when D and L are 
substituted in SI values (Larock et al., 2000). 

As implied in Eq. 1, different resistance equations are supposed to yield into a unique head loss 
for a specific flow. Since different resistance equations have different multipliers and exponents for 
involving parameters, the aforementioned closure requires use of equivalent flow resistance 
coefficients. 

In essence, relationships in which convert CHW to equivalent f may be classified into three major 
groups. The first category includes relations that require pipe diameter and flow Reynolds number 
for this conversion; whereas the second category exclusively utilizes pipe diameter information. 
The equations of the first category include Liou’s (1998) and Locher’s (2000) equations while 
Travis and Mays’ (2007) equation can be classified in the second category. These equations are 
shown in Eq. 2 to Eq. 4, respectively. 

f =133.80CHW
−1.85 Re−0.148 D−0.0158υ−0.148   (2) 

f =1016.610CHW
−1.85 Re−0.148 D−0.0158   (3) 

ε = D(3.320−0.021CHWD
0.01)2.173 exp(−0.04125CHWD

0.01)   (4) 

The third category may be relations which directly relate CHW to ɛ and vice versa without 
requiring any pipe-diameter information. For instance, Eq. 5 and Eq. 6 are the examples of such 
equations which are obtained using Excel-embedded regression tools (Niazkar and Afzali, 2015, 
2016) based on available and reliable data including CHW and their equivalent ɛ (Liou, 1998; 
Valiantzas, 2008; Uribe et al., 2015) listed in Table 1. As shown, the range of applicability of these 
equations are 100<CHW<150 and 0.0015mm<ɛ<1.5200mm.  

CHW = −348.15ε6 +1436.1ε5 − 2132ε4 +1315.9ε3 − 224ε2 −85.538ε +149.32 R2 = 0.94   (5) 

ε = 2×10−7CHW
5 −0.0002CHW

4 +0.0396CHW
3 −5.0397CHW

2 −5.0397CHW
2 +319.04CHW −825.6 R2 = 0.95   (6) 

3. APPLICATION AND RESULTS 

Calculating flow roughness is one of the inevitable steps in WDN analysis. Since this analysis 
requires iterations where flow rate and Reynolds number may change in each iteration, those flow 
resistance coefficient, which varies with flow regime variation, should be revised in each iteration 
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of such analyses. In this research, the impact of resistance equation selection on pipe network 
analysis is the main focus. The most common resistance equations, i.e., H-W and D-W equations, 
are utilized for this purpose. Two hydraulic solvers, invariantly called gradient algorithm and finite 
element method (FEM), are used to solve three sample pipe networks selected from the literature. 
For each network, five scenarios described later in this paper are considered and in each one, the 
network was solved assuming twenty two CHW with their equivalent ɛ selected from the literature 
(Liou, 1998; Valiantzas, 2008; Uribe et al., 2015). In each WDN analysis, similar pipe material was 
assumed for all pipes. In other words, it was assumed that all pipes have the same CHW while 
different values of CHW, ranging from 100 to 150 (Table 1), were utilized in different WDN 
analyses. This range includes a variety of different pipe materials in practice since proper 
application of H-W equation is for 100<CHW<160 (Diskin, 1960).  

 
Table 1. Equivalent CHW and ɛ used in D-W friction factor calculation 

Item Pipe materials CHW ɛ(mm) Reference 
1 Uncoated, new cast iron 120 0.2781 Liou (1998) 
2 Uncoated, new cast iron 129 0.1643 Liou (1998) 
3 Uncoated, new cast iron 121 0.3007 Liou (1998) 
4 Coated, very straight, no specials 144 0.0579 Liou (1998) 
5 Coated, Bonn service main, new 114 0.8534 Liou (1998) 
6 Coated, Bonn service main, new 111 1.0363 Liou (1998) 
7 Coated, well laid, new cast iron 146 0.0488 Liou (1998) 
8 Coated, well laid, new cast iron 145 0.0570 Liou (1998) 
9 Coated, Danzing main, new cast iron 131 0.2846 Liou (1998) 

10 Uncoated, new cast iron 115 0.9498 Liou (1998) 
11 Coated, straight, no special, new 140 0.1598 Liou (1998) 
12 Coated, Rochester main, new cast 129 0.3109 Liou (1998) 
13 Coated, Rosemary siphon, new cast 142 0.0975 Liou (1998) 
14 Coated, Edinburgh main, new cast 112.3 1.3411 Liou (1998) 
15 Coated sheet iron, riveted 133 0.0908 Liou (1998) 
16 Tuberculated Rosemary siphon, cast 112 1.4630 Liou (1998) 
17 Cleaned Rosemary siphon, cast iron 142 0.1097 Liou (1998) 
18 Exposy coasted steel 145 0.0280 Valiantzas (2008) 
19 Plain steel, new 130 0.2030 Valiantzas (2008) 
20 Concrete 100 1.5200 Valiantzas (2008) 
21 PVC 150 0.0015 Uribe et al. (2015) 
22 Cast iron 140 0.1000 Uribe et al. (2015) 

 
In order to assess the performance of H-W equation and the available relationships between CHW 

and f, each pipe network was solved for five different scenarios under steady-state condition. These 
scenarios are presented as following: 

1. In the first scenario, the implicit Colebrook-White (C-W) formula is used in the process of 
analyzing sample network. Since this formula is generally accepted as a standard equation for 
computing D-W friction factor in the literature, the results of this scenario is considered as the 
benchmark solution. 

2. The H-W equation is considered as flow resistance equation in the second scenario. In order 
to provide a rational comparison, equivalent CHW listed in Table 1 are used for each pipe 
material in this scenario. 

3. Liou’s (1998) equation is used to convert CHW to f. Since this equation requires pipe diameter 
and Reynolds number for conversion, it is used in each iteration of hydraulic solvers. Finally, 
it is emphasized that the D-W equation is used as the resistance equation in this scenario. 

4. The fourth scenario is similar to the third one except that in this scenario, Locher’s (2000) 
equation is used instead of Liou’s (1998) equation. 

5. Unlike the third and fourth scenarios, the second type of relationships between CHW and f, i.e., 
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Travis and Mays’s (2007) equation, is utilized in this scenario. Since the second category 
relates ɛ with CHW by using only pipe diameter information, there is no need to use this 
equation in each iteration of WDN analysis whereas f is evaluated based on absolute 
roughness and Reynolds number in each iteration. 

It should be noted that unknown hydraulic heads are calculated considering H-W equation in the 
second scenario in both gradient algorithm and FEM while D-W equation is used in other scenarios. 
Furthermore, CHW is converted to equivalent f in the main calculation in the three last scenarios. As 
hydraulic head values are computed in the hydraulic solvers in these scenarios, flow rate are 
computed using H-W and D-W equations in FEM and gradient algorithm, respectively. These h-
based methods are coded in MATLAB and Excel spreadsheet and the step-by-step details of these 
methods and their codes can be found in Niazkar and Afzali’s (2017a) paper for interested readers. 
Finally, the root mean square error (RMSE) and mean absolute relative error (MARE) are used to 
compare the hydraulic heads obtained in different scenarios with that of the first scenario. These 
evaluation criteria are shown in Eq. 7 and Eq. 8, respectively. 

RMSE =

(hi,1 − hi, j )
2

i=1

N

∑
N

∀j = 2,3,4,5              (7) 

MARE = 1
N

|
hi,1 − hi, j
hi,1

|
i=1

N

∑ ∀j = 2,3,4,5            (8) 

where 1,ih  and hi, j  are hydraulic heads at ith node computed in the first and jth scenario, respectively, 
and N is total number of nodal points in pipe network. 

The first pipe network is a small one having seven pipes, six nodes, and a reservoir (Niazkar and 
Afzali, 2017b). The variation of RMSE computed for the second to fifth scenarios using FEM and 
gradient algorithm are depicted in Figure 1. As shown, RMSE for the second and third scenarios are 
close for various CHW while RMSE values for the fourth scenario are sometimes smaller and 
sometimes larger than the ones calculated for the second scenario. On the other hand, the worst 
RMSE values are obtained for the fifth scenario for almost all CHW values. This indicates that the 
method in which uses pipe diameter for converting CHW into equivalent f yield to larger RMSE in 
comparison with other scenarios. 

The second WDN includes 74 pipes, 48 nodes, and two reservoirs (Chin et al., 1978). Figure 2 
illustrates RMSE values calculated for different scenarios for different CHW values. According to 
Figure 2, Travis and Mays’ (2007) equation used in the fifth scenario achieved the worst results 
based on the RMSE values. The discrepancy between hydraulic heads of the first and the fifth 
scenarios in terms of RMSE is more significant for the lowest CHW values and it decreases with the 
increase of CHW values. Achieving large RMSE values for the fifth scenario indicates that using 
relationships between CHW and f which exclusively utilizes pipe diameter for conversion may be 
unreliable in WDN analysis. Moreover, larger RMSE values overall is achieved when FEM is 
utilized for solving the second WDN, especially in the fifth scenario. 

A real pipe network which consists of 91 pipes, 65 computational nodes, and one reservoir 
(Arsene and Gabrys, 2014) was solved as the third WDN. The accuracy of different scenarios is 
compared in Figure 3 for the third network. Based on Figure 3, considered scenarios overall yield to 
larger RMSE values for CHW values lower than 130 while the accuracy of these scenarios increase 
for CHW values larger than 130. Although the range of RMSE values depicted in Figure 3 is 
relatively much lower than the one shown in Figure 2, the fifth scenario in both WDNs relatively 
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result larger RMSE values. In Figure 3, the fourth scenario also achieves the highest RMSE for 
some cases with CHW lower than 130.  

 

Figure 1. Variation of RMSE for different scenarios computed using (a) FEM and (b) gradient algorithm for the first 
pipe network. 

 

Figure 2. Variation of RMSE for different scenarios computed using (a) FEM and (b) gradient algorithm for the second 
pipe network. 
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Figure 3. Variation of RMSE for different scenarios computed using (a) FEM and (b) gradient algorithm for the third 
pipe network. 

In order to determine a comprehensive comparison between these scenarios, the average of 
RMSE and MARE values achieved for different CHW values are computed for each network and 
each scenario. The average of RMSE values for the three WDNs solved by FEM and gradient 
algorithm are listed in Table 2. Furthermore, the average of MARE values computed for different 
scenarios are shown in Figure 4. Table 2 indicates that both h-based methods achieve quite similar 
average RMSE values for the first and third pipe networks. However, achieved RMSE in the fifth 
scenario using FEM is approximately three times larger than the one obtained in the same scenario 
using gradient algorithm. According to Table 2 and Figure 4, solving the three WDNs demonstrates 
that the second and third scenarios overall achieve the closer results to the first scenario whereas the 
fifth scenario yield to significant errors, especially for the second network. In other words, solving 
WDN using H-W equation (second scenario) or using Liou’s (1998) equation for converting CHW to 
f lead to closer results to when D-W equation is utilized. Additionally, application of Travis and 
Mays’s (2007) equation for converting CHW to f in analyzing WDNs causes significant errors for 
various CHW values, especially in the second network. Since the application of H-W equation and 
the relationships, which uses both D and Re for converting CHW to f, to WDN analysis yield to 
results with MARE<0.01 on average, it can be concluded that these equations performs acceptably 
accurate. On the other hand, solving WDN using relationships, which exclusively uses D for 
converting CHW to f, are appeared to be unreliable for some cases. 
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Table 2. Average RMSE values calculated for different scenarios 

FEM (average RMSE) Scenarios 
2 3 4 5 

First network 0.245 0.243 0.220 0.451 
Second network 0.871 0.870 1.193 22.352 
Third network 0.101 0.101 0.120 0.136 
Average 0.405 0.405 0.511 7.646 

Gradient algorithm (average RMSE) Scenarios 
2 3 4 5 

First network 0.250 0.249 0.230 0.326 
Second network 0.861 0.861 0.986 7.806 
Third network 0.094 0.094 0.100 0.090 
Average 0.402 0.401 0.439 2.741 

 

Figure 4. Average MARE values calculated for different scenarios using (a) FEM and (b) gradient algorithm. 

4. CONCLUSION 

In this research, the applications of H-W equation and relationships which convert CHW to f in 
analyzing WDN are investigated. Regarding the importance of the subject in WDN literature, three 
pipe networks were solved considering five scenarios for different values of CHW using two h-based 
hydraulic solvers. Analyzing pipe networks for 660 different cases in this study shows that H-W 
equation and the relationships, which uses both pipe diameter and Reynolds number for converting 
CHW to f, overall yield to acceptably close results to when D-W equation is used. However, 
application of relationship, which uses pipe diameter for converting CHW to f, do not achieve 
accurate results for some cases, especially for lower values of CHW.  
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